
Yarema B. answered 11/21/15
Tutor
4.9
(135)
Topology, Modern, Real and Complex Analysis.
Let ε>0, x>0. Choose N=1/(2εx2) (same N works for the second problem). Then for any n>N :
1. |fn(x)-f(x)|=1/(2nx(x+1/(2n))<1/(2nx2)<ε. For uniform convergence on [1, \infty) choose N=1/(2ε) to get
|fn(x)-f(x)|=1/(2nx(x+1/(2n))<1/(2nx^2)<1/(2n)<ε.
2. |fn(x)-f(x)|=1/(n^2x(x+1/(n^2))<1/(2n^2x^2)<1/(2nx^2)<ε. Again, for the uniform convergence choose N=1/(2ε) to get
|fn(x)-f(x)|=1/(n^2x(x+1/(n2))<1/(2n^2x^2)<1/(2nx^2)<1/(2n)<ε.
QED