Let us first simplify the equation.
(1-cox5x)/(1-cos7x) .... multiply numerator and denominator by (1+cos5x)(1+cos7x)
=[(1-cos5x)(1+cos5x)(1+cos7x)]/[(1-cos7x)(1+cos7x)(1+cos5x)]......remember that (a+b)(a-b)=a2-b2
=[(1-cos25x)(1+cos7x)]/[(1-cos27x)(1+cos5x)] ....1-cos2x = sin2x
=[sin25x(1+cos7x)]/[sin27x(1+cos5x)]....rearrange and multiply and divide by 25x2.49x2
=[25x2.sin25x/25x2][49x2/(49x2sin27x)][(1+cos7x)/(1+cos5x).....rearrange
=(sin5x/5x)2.(7x/sin7x)2.(25x2/49x2).(1+cos7x)/(1+cos5x)
now simplify and take limit. Remember that limit x->0 (sinx/x) = 1
=(25/49) . lim x->0 (sin5x/5x)2 . lim x->0 (7x/sin7x)2 . lim x->0 (1+cos7x)/(1+cos5x)
=(25/49).1.1.(1+cos0)/(1+cos0) = (25/49).(2/2)
=25/49