
Tamara J. answered 05/02/13
Math Tutoring - Algebra and Calculus (all levels)
Given: f(x) = -x2 + 3x + 2 and g(x) = √(x - 2)
(i) fοg(x) = f(g(x)) = f(√(x - 2))
replace every x in f with new input which is √(x - 2)
f(√(x - 2)) = -(√(x - 2))2 + 3(√(x - 2)) + 2
= -(x - 2) + 3(√(x - 2)) + 2
= -x + 2 + 3√(x - 2) + 2
= 3√(x - 2) - x + 4
(ii) gοf(x) = g(f(x)) = g(-x2 + 3x + 2)
replace every x in g with new input which is -x2+3x+ 2
g(-x2 + 3x + 2) = √((-x2 + 3x + 2) - 2)
= √(-x2 + 3x + 2 - 2)
= √(-x2 + 3x)
(iii) gοg(-2) = g(g(-2))
first solve for g(-2); that is, solve for g(x) when x= -2
==> g(-2) = √(-2 - 2) = √(-4) = √(4)√(-1) = 2i
g(g(-2)) = g(2i)
= √(2i - 2)