Austin S. answered 04/22/25
Software Engineer | Cybersecurity Grad |
A) Total Distance Traveled
Let the initial drop height be H=5 m and the rebound ratio \(r=\tfrac45\).
• First drop: the ball falls 5 m.
• Each subsequent bounce: it rises to height 5r^n and then falls the same distance, so contributes 2\cdot5r^n m of travel for n=1,2,3,\dots.
Hence the total distance D is
\[
\begin{aligned}
D &= 5 \;+\; \sum_{n=1}^\infty 2\cdot 5\,r^n \\
&= 5 \;+\; 10\sum_{n=1}^\infty r^n
= 5 \;+\; 10\!\left(\frac{r}{1-r}\right)
= 5 \;+\; 10\!\left(\frac{\tfrac45}{1-\tfrac45}\right)
= 5 + 10\cdot 4
= 45\text{ m}.
\end{aligned}
\]
B) Total Time Traveled
A fall (or rise) from height h takes t=\sqrt{\frac{2h}{g}} with g=9.8 m/s².
1. Initial drop time:
t_0 = \sqrt{\frac{2\cdot5}{9.8}}.
2. Each bounce cycle (rise + fall from height 5r^n):
2\;\sqrt{\frac{2\,(5r^n)}{9.8}} =2\,\sqrt{\frac{2\cdot5}{9.8}}\;\sqrt{r^n}.
So the total time T is
\begin{aligned} T &= \sqrt{\frac{2\cdot5}{9.8}} \;\Bigl[\,1 \;+\; 2\sum_{n=1}^\infty r^{n/2}\Bigr] \\ &= \sqrt{\frac{10}{9.8}} \;\Bigl[\,1 \;+\; 2\!\bigl(\frac{\sqrt r}{1-\sqrt r}\bigr)\Bigr]. \end{aligned}
Numerically,
T \approx 1.01015\times\bigl[\,1 + 2\cdot\frac{\sqrt{4/5}}{1-\sqrt{4/5}}\bigr] \approx 18.1\text{ s}.
C) Summing “By Hand” Without Technology
Both parts lead to infinite geometric series:
• Distance series: \sum_{n=1}^\infty r^n
• Time series: \sum_{n=1}^\infty \bigl(\sqrt r\,\bigr)^n
You use the closed‑form formula for an infinite geometric series,
\sum_{n=0}^\infty ar^n = \frac{a}{1-r}\quad(|r|<1),
(or its shifted version starting at n=1), to compute each sum exactly.