Novalee S.

asked • 10/28/24

Integration stuff

Determine whether the integral is divergent or convergent. If it is convergent, evaluate it. If not, state your answer as "DNE".

∫ oo on top and 2 on bottom (9)/(x+2)^3/2 dx

Julius N.

To determine whether the integral\[ \int_{2}^{\infty} \frac{9}{(x+2)^{3/2}} \, dx\] is convergent or divergent, we first evaluate the integral. Step1: Find the antiderivativeThe function we are integrating is\[ \frac{9}{(x+2)^{3/2}}. \] We can factor out the constant \(9\): \[ 9 \int_{2}^{\infty} \frac{1}{(x+2)^{3/2}} \, dx. \] Next, we can use the substitution \(u = x +2\), which gives \(du = dx\), and when \(x =2\), \(u =4\). Thus, we rewrite the integral: \[ 9 \int_{4}^{\infty} \frac{1}{u^{3/2}} \, du. \] Step2: Evaluate the integralNow we can evaluate the integral: \[ \int \frac{1}{u^{3/2}} \, du = -\frac{2}{\sqrt{u}} + C. \] So, we have\[ 9 \left[-\frac{2}{\sqrt{u}}\right]_{4}^{\infty} =9 \left[-\frac{2}{\sqrt{\infty}} + \frac{2}{\sqrt{4}}\right]. \] Calculating the limits: 1. \(\frac{2}{\sqrt{\infty}} =0\) 2. \(\frac{2}{\sqrt{4}} =1\) Thus, we get: \[ 9 \left[0 -1\right] =9 \times (-1) = -9. \] ### ConclusionSince the integral evaluates to a finite number, it is convergent. Therefore, we can conclude: \[ \int_{2}^{\infty} \frac{9}{(x+2)^{3/2}} \, dx = -9. \]### Final AnswerThe integral converges, and its value is: \[ -9. \]
Report

10/29/24

2 Answers By Expert Tutors

By:

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.