
Sofia K. answered 10/09/24
Math minor and college-certified to teach
- Let u = 5x + 10.
- Differentiate u with respect to x: du/dx = 5, so dx = du / 5.
- Substitute into the integral: ∫ 2dx / (5x + 10) = ∫ (2 * du / 5) / u.
- Factor out constants: (2/5) ∫ du / u.
- The integral of (1/u) is ln|u|, so: (2/5) ln|u| + C.
- Substitute u = 5x + 10 back in: (2/5) ln|5x + 10| + C.
Final answer: (2/5) ln|5x + 10| + C.