
Natalie N.
asked 08/28/24Find the area of the region(s) between the given curves below on the given interval.
y = 8 cos x, y = 8 − 8 cos x from x = 0 to x = 𝜋
.
2 Answers By Expert Tutors
Sharad Chand P. answered 08/29/24
Let's solve the problem step by step to find the correct area between the curves:
1. **Find the points of intersection:**
Given equations:
Solving for \(\cos x\):
\[
16 \cos x = 8
\]
\[
\cos x = \frac{1}{2}
\]
The solutions for \(\cos x = \frac{1}{2}\) within one period of \(2\pi\) are:
\[
x = \frac{\pi}{3} \text{ and } x = \frac{5\pi}{3}
\]
2. **Set up the integrals:**
- For \(0 \leq x \leq \frac{\pi}{3}\), the curve \(y = 8 \cos x\) is above \(y = 8 - 8 \cos x\).
- For \(\frac{\pi}{3} \leq x \leq \pi\), the curve \(y = 8 - 8 \cos x\) is above \(y = 8 \cos x\).
Therefore, the area \(A\) between the curves is:
\[
A = \int_{0}^{\frac{\pi}{3}} \left[(8 \cos x) - (8 - 8 \cos x)\right] \, dx + \int_{\frac{\pi}{3}}^{\pi} \left[(8 - 8 \cos x) - (8 \cos x)\right] \, dx
\]
Simplify the integrands:
\[
8 \cos x - (8 - 8 \cos x) = 16 \cos x - 8
\]
\[
(8 - 8 \cos x) - 8 \cos x = 8 - 16 \cos x
\]
So:
\[
A = \int_{0}^{\frac{\pi}{3}} (16 \cos x - 8) \, dx + \int_{\frac{\pi}{3}}^{\pi} (8 - 16 \cos x) \, dx
\]
3. **Evaluate the integrals:**
\[
\int_{0}^{\frac{\pi}{3}} (16 \cos x - 8) \, dx
\]
\[
\int_{0}^{\frac{\pi}{3}} 16 \cos x \, dx - \int_{0}^{\frac{\pi}{3}} 8 \, dx
\]
\[
16 \sin x \bigg|_{0}^{\frac{\pi}{3}} - 8 x \bigg|_{0}^{\frac{\pi}{3}}
\]
\[
16 \left(\sin \frac{\pi}{3} - \sin 0\right) - 8 \left(\frac{\pi}{3} - 0\right)
\]
\[
16 \left(\frac{\sqrt{3}}{2}\right) - \frac{8\pi}{3}
\]
\[
8\sqrt{3} - \frac{8\pi}{3}
\]
Now for the second integral:
\[
\int_{\frac{\pi}{3}}^{\pi} (8 - 16 \cos x) \, dx
\]
\[
\int_{\frac{\pi}{3}}^{\pi} 8 \, dx - \int_{\frac{\pi}{3}}^{\pi} 16 \cos x \, dx
\]
\[
8 x \bigg|_{\frac{\pi}{3}}^{\pi} - 16 \sin x \bigg|_{\frac{\pi}{3}}^{\pi}
\]
\[
8 (\pi - \frac{\pi}{3}) - 16 (\sin \pi - \sin \frac{\pi}{3})
\]
\[
8 \left(\frac{2\pi}{3}\right) - 16 \left(0 - \frac{\sqrt{3}}{2}\right)
\]
\[
\frac{16\pi}{3} + 8\sqrt{3}
\]
4. **Combine the results:**
Adding the two areas:
\[
A = \left(8 \sqrt{3} - \frac{8 \pi}{3}\right) + \left(\frac{16 \pi}{3} + 8 \sqrt{3}\right)
\]
\[A = 16 \sqrt{3} + \frac{8 \pi}{3} \]
Therefore, the correct area between the curves is:
\[
A = 16 \sqrt{3} + \frac{8 \pi}{3}
\]

Yefim S. answered 08/28/24
Math Tutor with Experience
8cosx = 8 - 8cosx; cosx = 1/2; x = π/3;
Area A = ∫0π/3((16cosx - 8)dx + ∫π/3π(8 - 16cosx)dx = (16sinx - 8x)0π/3 + (8x - 16sinx)π/3π = 8√3 - 8π/3 + 8π -
8π/3 + 8√3 = 16√3 + 8π/3
Still looking for help? Get the right answer, fast.
Get a free answer to a quick problem.
Most questions answered within 4 hours.
OR
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Doug C.
desmos.com/calculator/7286l4ar7m08/29/24