Mark M. answered 07/26/24
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
The Maclaurin Series is f(0) + f'(0)x + f"(0)/2! x2 + f'''(0)/3!x3 + ...
f(x) = 8x, so f(0) = 1
f'(x) = (ln8)8x, so f'(0) = ln8
f"(x) = (ln8)(ln8)8x, so f"(0) = (ln8)2, etc
So, we have 1 + (ln8)x + (ln8)2x2 / 2! + (ln8)3x3 / 3! + ...= ∑(n=0 to ∞) [(xln8)n / n!] (Recall 0! = 1! = 1)
Use Ratio Test to get interval of convergence:
l [(xln8)n+1/(n+1)!][n!/(xln8)n] l = (1/(n+1))ln8 lxl
limn→∞ [(1/(n+1))ln8 lxl] = lxl (ln8)(0) = 0 < 1 for all real x.
So, interval of convergence = (-∞, ∞) and R = radius of convergence = ∞.