Given integral:
∫ (3x^2 - 4x + 10)^6 (12x - 8) dx
1. Substitute:
Let u = 3x^2 - 4x + 10.
2. Differentiate `u` with respect to `x`:
du/dx = 6x - 4.
Rearranging gives:
du = (6x - 4) dx.
3. Express `12x - 8` in terms of `du`:
Note that 12x - 8 = 2(6x - 4). So:
12x - 8 dx = 2 du.
4. Substitute these into the integral:
∫ (3x^2 - 4x + 10)^6 (12x - 8) dx
becomes:
∫ u^6 * 2 du.
5. Simplify and integrate:
2 ∫ u^6 du.
To integrate `u^6`, we get:
∫ u^6 du = u^7 / 7.
So:
2 * (u^7 / 7) = (2 / 7) * u^7.
6. Substitute`u` back:
u = 3x^2 - 4x + 10.
Therefore:
∫ (3x^2 - 4x + 10)^6 (12x - 8) dx = (2 / 7) * (3x^2 - 4x + 10)^7 + C.
Here, `C` is the constant of integration.