Ross M. answered 07/19/24
Math, Economics, and Data Science Tutor
To find the radius of convergence of the series
∑n=1∞n2xn7⋅14⋅21⋯(7n),\sum_{n=1}^{\infty} \frac{n^2 x^n}{7 \cdot 14 \cdot 21 \cdots (7n)},n=1∑∞7⋅14⋅21⋯(7n)n2xn,
we start by expressing the general term of the series:
an=n2xn7⋅14⋅21⋯(7n).a_n = \frac{n^2 x^n}{7 \cdot 14 \cdot 21 \cdots (7n)}.an=7⋅14⋅21⋯(7n)n2xn.
The denominator can be written as a product:
7⋅14⋅21⋯(7n)=7n⋅(1⋅2⋅3⋯n)=7n⋅n!,7 \cdot 14 \cdot 21 \cdots (7n) = 7^n \cdot (1 \cdot 2 \cdot 3 \cdots n) = 7^n \cdot n!,7⋅14⋅21⋯(7n)=7n⋅(1⋅2⋅3⋯n)=7n⋅n!,
thus,
a_n=n2xn7n⋅n!.a_n = \frac{n^2 x^n}{7^n \cdot n!}.an=7n⋅n!n2xn.
Now we apply the ratio test, which involves finding the limit of the absolute value of the ratio of successive terms:
L=limn→∞∣an+1an∣.L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.L=n→∞limanan+1.
Let's compute this ratio:
an+1=(n+1)2xn+17n+1⋅(n+1)!.a_{n+1} = \frac{(n+1)^2 x^{n+1}}{7^{n+1} \cdot (n+1)!}.an+1=7n+1⋅(n+1)!(n+1)2xn+1.
So,
∣an+1an∣=∣(n+1)2xn+17n+1(n+1)!⋅7n⋅n!n2xn∣.\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)^2 x^{n+1}}{7^{n+1} (n+1)!} \cdot \frac{7^n \cdot n!}{n^2 x^n} \right|.anan+1=7n+1(n+1)!(n+1)2xn+1⋅n2xn7n⋅n!.
Simplifying this, we get:
∣an+1an∣=∣(n+1)2xn+17n+1(n+1)!⋅7n⋅n!n2xn∣=∣(n+1)2x7(n+1)n2∣.\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)^2 x^{n+1}}{7^{n+1} (n+1)!} \cdot \frac{7^n \cdot n!}{n^2 x^n} \right| = \left| \frac{(n+1)^2 x}{7 (n+1) n^2} \right|.anan+1=7n+1(n+1)!(n+1)2xn+1⋅n2xn7n⋅n!=7(n+1)n2(n+1)2x.
As n→∞n \to \inftyn→∞,
∣n+17n2x∣≈∣x7n∣.\left| \frac{n+1}{7 n^2} x \right| \approx \left| \frac{x}{7n} \right|.7n2n+1x≈7nx.
Taking the limit as n→∞n \to \inftyn→∞,
L=limn→∞∣x7n∣=0.L = \lim_{n \to \infty} \left| \frac{x}{7n} \right| = 0.L=n→∞lim7nx=0.
Since L=0for all x, the series converges for all x. Therefore, the radius of convergence R is:
R=∞.