Ross M. answered 07/19/24
Math, Economics, and Data Science Tutor
Let
an=(x+7)n7nln(n).a_n = \frac{(x+7)^n}{7^n \ln(n)}.an=7nln(n)(x+7)n.
The ratio test involves finding the limit of the absolute value of the ratio of successive terms:
L=limn→∞∣an+1an∣.L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.L=n→∞limanan+1.
Let's compute this ratio:
an+1=(x+7)n+17n+1ln(n+1).a_{n+1} = \frac{(x+7)^{n+1}}{7^{n+1} \ln(n+1)}.an+1=7n+1ln(n+1)(x+7)n+1.
So,
∣an+1an∣=∣(x+7)n+17n+1ln(n+1)⋅7nln(n)(x+7)n∣.\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(x+7)^{n+1}}{7^{n+1} \ln(n+1)} \cdot \frac{7^n \ln(n)}{(x+7)^n} \right|.anan+1=7n+1ln(n+1)(x+7)n+1⋅(x+7)n7nln(n).
Next you need to find out where L <1