5 - t + 10t2 = a(1 + t2) + b(-t + t2) + c(1 + 2t + t2)
= (a + c) + (-b + 2c)t + (a + b + c)t2
So, a + c = 5
-b + 2c = -1
a + b + c = 10
From the first equation, c = 5 - a.
So, -b + 2(5 - a) = -1 and a + b + (5 - a) = 10.
b = 5, a = 3 and c = 2
Coordinate vector is <a, b, c> = <3, 5, 2>
In other words, 5 - t + 10t2 = 3(1 + t2) + 5(-t + t2) + 2(1 + 2t + t2).
James S.
05/19/24