
Yefim S. answered 04/14/24
Math Tutor with Experience
Equation of tangent line to the curve y = (x + 8)-2 at point (x, (x + 8)-2): y' = - 2(x + 8)-3
Y = (x + 8)-2 - 2(x + 8)-3(X - x);
X = 0; Y = (x + 8)-2+ 2x(x + 8)-3 = (x + 8)-3(3x + 8)
Y = 0; x + 8 = 2(X - x); X = 3x/2 + 4;
Area A(x) = XY/2 = (3x/2 + 4)(3x + 8)(x + 8)-3/2 = (3x + 8)2(x + 8)-3/4;
A'(x) = 1/4[6(3x + 8)(x + 8)-3 - 3(3x + 8)2(x + 8)-4] = 1/4(x + 8)-4(3x + 8)(24 - 3x) = 0
Because x > 0 we have 3x - 24 = 0; x = 8; A'(x) at x =8 change sign from + to -, so we have max
max A9x) = A(8) = (24 + 8)2(16-3/4 = 0.0625