
Kevin S. answered 12/19/23
Outstanding Math PHD Tutor 20 years of Developing Mastery + Confidence
1. Substitution:
- θ = tan(x)
- dθ = sec²(x) dx
2. Change of Limits:
- For θ = 0, x = 0
- For θ = 1, x = π/4
3. Integral Transformation:
- √(θ² + 1) = √(tan²(x) + 1) = √(sec²(x)) = |sec(x)| = sec(x)
4. Transformed Integral:
- L = ∫ sec³(x) dx over [0,π/4]
5. Solving the Integral:
- The integral of sec³(x) is:
- ½(sec(x)tan(x) + ln|sec(x) + tan(x)|) + C
6. Applying Limits:
- L = ½[sec(π/4)tan(π/4) + ln|sec(π/4) + tan(π/4)|] - ½[sec(0)tan(0) + ln|sec(0) + tan(0)|]
- L = ½(√2 + ln(1 + √2))
Therefore, the solution is:
L = ½(√2 + ln(1 + √2))