Mark M. answered 12/01/23
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
∫ x2√(2+x)dx
Let u = 2+x. So, x = u - 2 and dx = du
So we have ∫ (u - 2)2√u du = ∫ [(u2 - 4u + 4)√u]du = ∫[u5/2 - 4u3/2 + 4u1/2]du
---------------------
∫(0 to 1)(3t - 1)50dt
Let u = 3t - 1. Then du = 3dt. So, dt = (1/3)du.
When t = 0, u = -1 and when t = 1, u = 2.
So, we have (1/3)∫(-1 to 2) u50du
----------------------------
sin(-x) = -sinx
So, if f(x) = x4sinx, then f(-x) = -f(x). Thus, f(x) is an odd function. Therefore, the graph of y = f(x) is symmetric with respect to the origin.
So, ∫(-π/3 to π/3) x4sinxdx = 0