Mark M. answered 11/30/23
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
f(x) = ln(2 + sinx), 0 < x < 2π
f'(x) = cosx / (2 + sinx)
f"(x) = [(2+sinx)(-sinx) - cosx(cosx)] / (2 + sinx)2 = [-2sinx - (sin2x + cos2x)] / (2+sinx)2
f"(x) = [-2sinx - 1] / (2+sinx)2 = 0
sinx = -1/2 x = 7π/6, 11π/6
If 0 < x < 7π/6, then f"(x) < 0. So f is concave down.
If 7π/6 < x < 11π/6, then f"(x) > 0. So, f is concave up.
If 11π/6 < x < 2π, then f"(x) < 0. So, f is concave down.