Mark M. answered 11/21/23
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
(1 + x)-1/2 ≈ 1 + (-1/2)x + [(-1/2)(-3/2) / 2!]x2 + [(-1/2)(-3/2)(-5/2) / 3!]x3 + [(-1/2)(-3/2)(-5/2)(-7/2) / 4!]x4
(1 + x)-1/2 ≈ 1 - (1/2)x + (3/8)x2 - (5/16)x3 + (35/128)x4
Replace x by -x2:
(1 - x2)-1/2 ≈ 1 - (1/2)(-x2) + (3/8)(-x2)2 - (5/16)(-x2)3 + (35/128)(-x2)4
(1 - x2)-1/2 ≈ 1 + (1/2)x2 + (3/8)x4 + (5/16)x6 + (35/128)x8
Integrate term by term:
Sin-1x = ∫ (1 / √(1 - x2))dx ≈ x + (1/6)x3 + (3/40)x5 + (5/112)x7 + (35/1152)x9
So, since Sin-1(1) = π/2, π/2 ≈ 1 + 1/6 + 3/40 + 5/112 + 35/1152 = 1.316691468
π ≈ 2(1.316691468) = 2.633382937
Since Sin-1(1/2) = π/6, π/6 ≈ (1/2) + (1/6)(1/8) + (3/40)(1/32) + (5/112)(1/128) + (35/1152)(1/512)
π/6 ≈ (1/2) + (1/48) + (3/1280) + (5/14336) + (35/589824)
π/6 ≈ 0.523585195
π ≈ 6(0.523585195) = 3.141511172