Mark M. answered 11/03/23
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
Recall: 1 + tan2θ = sec2θ
∫ 12x2sec4(2x3)tan2(2x3)dx = 2∫tan2(2x3)sec2(2x3)sec2(2x3)(6x2)dx
= 2∫tan2(2x3)(1 + tan2(2x3))sec2(2x3)(6x2)dx Let u = tan(2x3). Then du = sec2(2x3)(6x2)dx
= 2∫ u2(1 + u2)du = 2∫ (u2 + u4)du = (2/3)u3 + (2/5)u5 + C = (2/3)tan3(2x3) + (2/5)tan5(2x3) + C