By the Rational Zero Theorem, the only possible rational zeros are
1, -1, 2, -2.
2 is a root. So, x-2 is a factor of j(x). Divide synthetically by x-2:
2⌋ 1 -3 3 -2
2 -2 2
1 -1 1 0
j(x) = x3 - 3x2 + 3x - 2 = (x-2)(x2-x+1)
If x2-x+1 = 0, then x = 1 ± √[(-1)2-4(1)(1)]
2(1)
= 1 ± √(-3)
2
= 1 ± √(3) i
2
Zeros of j(x): 2, 1 + √(3) i , 1 - √(3) i
2 2
If we denote the zeros by r1, r2, and r3, then
j(x) = (x - r1)(x - r2)(x - r3)