
Yefim S. answered 02/20/24
Math Tutor with Experience
x = 1 + 5s - t; y = 1 - 5s + t; z = 1 + 3s + 3t;
Square of distance: f(s, t) = d2 = (5s - t - 9)2 + (t - 5s - 99)2 + (3s + 3t - 999)2;
To get minimum: fs = 10(5s - t - 9) - 10(t - 5s - 99) + 6(3s + 3t - 999) = 0;
ft = - 2(5s - t - 9) + 2(t - 5s - 99) + 6(3s + 3t - 999) = 0
118s - 2t = 5094
-2s + 22t = 6174
1296s = 62208; s = 48; t = (118·48 - 5094)/2 = 285
min d = [(5·48 - 285 - 9)2 + (285 - 5·48 - 99)2 + (3·48 + 3·285 - 999)2]1/2 = 58321/2 = 76.37