Subodha kumar S. answered 06/18/23
skatudy points on math view
Here to obtained the Taylor series of order 3 we have Taylor polynomial
T_n(x)=∑_(n=0)^∞(f^(n)(a))((x-a)^n)/(n!).
Here given a=6 and the function f(x)=(26-3x)^(4/3).
The function value is f(6)=(26-18)^(4/3)=16
The derivatives gives
f'(x)=4/3(26-3x)^(4/3-1)(-3)=-4(26-3x)^(1/3)
=>f'(6)=(-4)(8)^(1/3)=-8
f''(x)=(-4/3)(26-3x)^(1/3-1)(-3)=4(26-x)^(-2/3)
=>f"(6)=4(8^(-2/3))=1
f"'(x)=(-8/3)(26-x)^(-5/3)(-3)
=>f"'(6)=(8)(8^(-5/3))=(8)(1/32)=1/4
So now the series is
T_3(x)=16+(-8)(x-6)+(1)(1/2)(x-6)^2+(1/4)(1/6)(x-6)^3
=16-8(x-6)+(1/2)(x-6)^2+(1/24)(x-6)^3
Answer: 16-8(x-6)+(1/2)(x-6)^2+(1/24)(x-6)^3