AJ L. answered 06/17/23
Patient and knowledgeable Calculus Tutor committed to student mastery
Recall the Taylor Series formula
f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)2/2! + f'''(a)(x-a)3/3! + ... + fn(a)(x-a)n/n! = ∑[n=0,∞] fn(a)/n!•(x-a)n
Find f(a) and its first 3 derivatives at a=8
f(a) = ln(a) = ln(8)
f'(a) = 1/a = 1/8
f''(a) = -1/a2 = -1/64
f'''(a) = 2/a3 = 2/512 = 1/256
Evaluate
f(x) ≈ ln(8) + (1/8)(x-8) - (1/64)(x-8)2/2! + (1/256)(x-8)3/3!
f(x) ≈ ln(8) + (x-8)/8 - (x-8)2/128 + (x-8)3/1536
Hope this helped!

AJ L.
06/17/23