Kevin T. answered 01/09/25
Mathematics & Programming for all!
(-3/4, 3/4 , 9/4, 3,4)
To find the orthogonal projection of V = (0, 0, 3, 0) onto the subspace W of R^4 spanned by the vectors [1, -1, -1, 1], [-1, -1, -1, -1], and [-1, -1, 1, 1], follow these steps:
- Normalize the basis vectors.
- For [1, -1, -1, 1], the magnitude is sqrt(1^2 + (-1)^2 + (-1)^2 + 1^2) = 2.
- Normalized vector: (1/2, -1/2, -1/2, 1/2).
- For [-1, -1, -1, -1], the magnitude is sqrt((-1)^2 + (-1)^2 + (-1)^2 + (-1)^2) = 2.
- Normalized vector: (-1/2, -1/2, -1/2, -1/2).
- For [-1, -1, 1, 1], the magnitude is sqrt((-1)^2 + (-1)^2 + 1^2 + 1^2) = 2.
- Normalized vector: (-1/2, -1/2, 1/2, 1/2).
- Compute the projection of V onto each normalized basis vector.
- For the first vector (1/2, -1/2, -1/2, 1/2):
- Dot product = (0)(1/2) + (0)(-1/2) + (3)(-1/2) + (0)(1/2) = -3/2.
- Projection = (-3/2) * (1/2, -1/2, -1/2, 1/2) = (-3/4, 3/4, 3/4, -3/4).
- For the second vector (-1/2, -1/2, -1/2, -1/2):
- Dot product = (0)(-1/2) + (0)(-1/2) + (3)(-1/2) + (0)(-1/2) = -3/2.
- Projection = (-3/2) * (-1/2, -1/2, -1/2, -1/2) = (3/4, 3/4, 3/4, 3/4).
- For the third vector (-1/2, -1/2, 1/2, 1/2):
- Dot product = (0)(-1/2) + (0)(-1/2) + (3)(1/2) + (0)(1/2) = 3/2.
- Projection = (3/2) * (-1/2, -1/2, 1/2, 1/2) = (-3/4, -3/4, 3/4, 3/4).
- Add up the projections to get the total projection onto the subspace W.
- (-3/4, 3/4, 3/4, -3/4) + (3/4, 3/4, 3/4, 3/4) + (-3/4, -3/4, 3/4, 3/4) = (-3/4 + 3/4 - 3/4, 3/4 + 3/4 - 3/4, 3/4 + 3/4 + 3/4, -3/4 + 3/4 + 3/4).
- Simplify: (-3/4, 3/4, 9/4, 3/4).
Final result:
The orthogonal projection of V = (0, 0, 3, 0) onto the subspace W is (-3/4, 3/4, 9/4, 3/4).