AJ L. answered 05/07/23
Patient and knowledgeable Calculus Tutor committed to student mastery
∫dx/(x2-a2) = ∫dx/[(x+a)(x-a)] = ∫[A/(x+a) + B/(x-a)]dx
A/(x+a) + B/(x-a) = 1/[(x+a)(x-a)]
A(x-a) + B(x+a) = 1
Suppose x=a
A(a-a) + B(a+a) = 1
B(2a) = 1
B = 1/2a
Suppose x=-a
A(-a-a) + B(-a+a) = 1
A(-2a) = 1
A = -1/2a
Thus, ∫dx/(x2-a2) = ∫[[-1/(2a)]/(x+a) + [1/(2a)]/(x-a)]dx, which can be easily solved:
∫[[-1/(2a)]/(x+a) + [1/(2a)]/(x-a)]dx
= [-1/(2a)]ln|x+a| + [1/(2a)]ln|x-a| + C
= [1/(2a)][-ln|x+a| + ln|x-a|] + C
= [1/(2a)][ln|x-a| - ln|x+a|] + C
= [1/(2a)]ln(|x-a|/|x+a|) + C
Hope this helped!