AJ L. answered 05/02/23
Patient and knowledgeable Calculus Tutor committed to student mastery
Simplify f(x)
f(x) = 54(x2-1)/(x2+27)
f(x) = (54x2-54)/(x2+27)
Determine f'(x) using Quotient Rule
f'(x) = [(x2+27)(54x2-54)' - (54x2-54)(x2+27)']/(x2+27)2
f'(x) = [108x(x2+27) - 2x(54x2-54)]/(x2+27)2
f'(x) = (108x3+2916x-108x3+108x)/(x2+27)2
f'(x) = 3024x/(x2+27)2
Determine critical values where f'(x)=0
0 = 3024x/(x2+27)2
0 = 3024x
0 = x
Therefore, the only critical value of f(x) is at x=0.
Use test points to see where f(x) increases and decreases
f'(-1) = 3024(-1)/((-1)2+27)2 = -3024/(282) = -3024/784 < 0
f'(1) = 3024(1)/(12+27)2 = 3024/(282) = 3024/784 > 0
Thus, f(x) decreases over the interval (-∞,0) and increases over the interval (0,∞), which makes x=0 a local minimum.
Find possible inflection points (IPs) where f''(x)=0
f'(x) = 3024x/(x2+27)2
f''(x) = [(x2+27)2(3024x)' - (3024x)((x2+27)2)']/((x2+27)2)2
f''(x) = [3024(x2+27)2 - (3024x)(4x(x2+27))]/(x2+27)4
f''(x) = [3024(x2+27)2 - 12096x2(x2+27)]/(x2+27)4
f''(x) = [3024(x2+27) - 12096x2]/[(x2+27)3
f''(x) = (3024x2 + 81648 - 12096x2)/(x2+27)3
f''(x) = (81648-9072x2)/(x2+27)3
0 = (81648-9072x2)/(x2+27)3
0 = 81648-9072x2
9072x2 = 81648
x2 = 9
x = ±3
Therefore, (-3,12) and (3,12) are inflection points of f(x)
To get the graph, use the Desmos graphing calculator and insert f(x) = (54x2-54)/(x2+27)
Hope this helped!