
William W. answered 04/03/23
Experienced Tutor and Retired Engineer
For Newton's method, you can use the equation:
1) Find the zeros of f(x) = x3 + x - 1
Taking the derivative: f '(x) = 3x2 + 1
Let's start with x0 = 0 and calculate x1:
x1 = 0 - f(0)/f '(0) = 0 - -1/1 = 1
Now, calculate x2:
x2 = 1 - f(1)/f '(1) = 1 - 1/4 = 0.75
Now calculate x3:
x3 = 0.75 - f(0.75)/f '(0.75) = 0.75 - 0.171875/2.6875 = 0.75 - 0.0639534884 = 0.6860465116
Now calculate x4:
x4 = 0.6860465116 - f(0.6860465116)/f '(0.6860465116) = 0.6860465116 - 0.0089410366/2.411979448 = 0.6860465116 - 0.003706929 = 0.6823395826
Now calculate x5:
x5 = 0.6823395826 - f(0.6823395826)/f '(0.6823395826) = 0.6823395826 - 0.000028230628/2.396761918 = 0.6823395826 - 0.00001177865348 = 0.6823278039
Notice that the 3rd decimal point did not change between x4 and x5 so our answer is 0.682
Repeat this process on the 2nd problem.
I'd begin with x0 = -1
f '(x) = 3x2
Calculate x1:
x1 = -1 - f(-1)/f '(-1) = -1 - 2/3 = -5/3
Calculate x2:
x2 = -5/3 - f(-5/3)/f '(-5/3) = -5/3 - -1.62962963/8.3333333333 = -5/3 - -0.19555555556 = -1.471111111
Calculate x3:
x3 = -1.471111111 - f(-1.471111111)/f '(-1.471111111) = -1.471111111 - -0.1837314451/6.492503703 = 1.471111111 - -0.0282990128 = -1.442812098
Calculate x4:
x4 = -1.442812098 - f(-1.442812098)/f '(-1.442812098) = -1.442812098 - -0.0035116836/6.24512025 = -1.442812098 - -0.0000562308404 = -1.44224979
Since x3 rounds to -1.443 and x4 rounds to -1.442, let's do x5
Calculate x5:
x5 = -1.44224979 - f(-1.44224979)/f '(-1.44224979) = -1.44224979 - -0.0000013709372/6.24025337 = -1.44224979 - -0.000000219692554 = -1.44224957
So our answer is -1.442