
William W. answered 03/24/23
Experienced Tutor and Retired Engineer
xln(x) dy/dx = 1
xln(x) dy = dx
dy = dx/(xlnx)
∫dy = ∫1/(xln(x)) dx
y = ln(ln(x)) + C
Given (e,1) then:
1 = ln(ln(e)) + C
1 = ln(1) + C
1 = 0 + C therefore C = 1
So y = ln(ln(x)) + 1
y(ee) = ln(ln(ee)) + 1 = ln(e•ln(e)) + 1 = ln(e) + ln(ln(e)) + 1 = 1 + ln(1) + 1 = 1 + 0 + 1 = 2