Mark M. answered 03/20/23
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
Let g(x) = cotx and f(x) = sinx
Then f(g(x)) = f(cotx) = sin(cotx).
If y = f(u), where u is a function of x, then, by the Chain Rule, dy/dx = (dy/du)(du/dx)
So, if u = cotx, and y = f(x) = sinx, then y = f(u) = sinu
f'(cotx) = (dy/du)(du/dx) = (cosu)(-csc2x) = cos(cotx)(-csc2x)