V = πr2h = 400
h = 400/π · r-2
bottom area = πr2 ; bottom cost = .03πr2
lateral surface area = 2πrh = 2πr(400/π · r-2) = 800r-1 ; cost of lateral area = 24r-1
top area = πr2 ; top cost = .06πr2
Total Cost: C(r) = .09πr2 + 24r-1
C'(r) = .18πr - 24r-2 = 0
.18r3 - 24 = 0
r = 3√(24/.18) ≈ 5.11 cm
h = 400/π · (5.11)-2 ≈ 4.88 cm
Min cost: C(5.11) = .09π(5.11)2 + 24/5.11 ≈ $12.08