Let v = <a, b, c> and w = <d, e, f>
T is linear if T(v + w) = T(v) + T(w) and T(kv) = kT(v), where k is any real number
T(v + w) = T(<a+d, b+e, c+f>) = < a+d, b+e, -2(c+f) > = <a, b, -2c> + <d, e, -2f> = T(v) + T(w)
T(kv) = T(<ka, kb, kc>) = <ka, kb, -2kc> = k<a, b, -2c> = kT(v)
T is a linear transformation since T(v + w) = T(v) + T(w) and T(kv) = kT(v)