Observe 1/(1 + x)9 = (1 + x)-9. Using the binomial series formula with m = -9 we obtain
1/(1 + x)9 = ∑[k = 0 to ∞] binom{-9, k} xk
where binom{-9, k} = (-9)(-9-1)•••(-9-k+1)/k! Now
(-9)(-9-1)•••(-9-k+1)/k! = (-1)k (9+k-1)•••(9+1)(9)/k! = (-1)k (9 + k - 1 choose k) = (-1)k (8 + k choose k)
and hence
1/(1 + x)9 = ∑[k = 0 to ∞] (-1)k (8 + k choose k) xk = ∑[k = 0 to ∞] (-1)k (8 + k)!/(8! k!) xk