
Luke J. answered 11/18/22
Experienced High School through College STEM Tutor
Given & Find:
L = limx→∞( (( x + 10 ) / ( x - 6 ))5x )
Solution:
= limx→∞( e5x * ln( ( x + 10 ) / ( x - 6 ) )
= exp( 5 * limx→∞( x * ln( ( x+10 ) / ( x-6 )) ) )
To be able to better see how L'Hopital's Rule fits into this problem, I suggest doing this substitution:
x = 1 / n
Turning the limit into:
= exp( 5 * limn→0( ln[ ( 1 / n + 10 ) / ( 1 / n + 6 ) ] / n ) )
And then I suggest multiplying the "top and bottom" of the quotient in the natural log 'n', making it:
= exp( 5 * limn→0( ln[ ( 1 + 10n ) / ( 1 + 6n ) ] / n ) )
= exp( 5 * limn→0( ln[ ( 1 + 10(0) ) / ( 1 + 6(0) ) ] / (0) ) ) = exp( 5 * ln( 1 ) / 0 ) = exp( 5 * 0 / 0 )
Now we can definitively use L'Hopital's Rule w.r.t. (with respect to) n
d/dn( ln[ ( 1 + 10n ) / ( 1 + 6n ) ] ) = 1 / [ ( 1 + 10n ) / ( 1 + 6n ) ] * d/dn[ ( 1 + 10n ) / ( 1 + 6n ) ]
= [ ( 1 + 6n ) / ( 1 + 10n ) ] *[ 10 ( 1 + 6n ) - ( -6 ) ( 1 + 10n ) ] / [ ( 1 + 6n )2 ]
d/dn( ln[ ( 1 + 10n ) / ( 1 + 6n ) ] ) = [ 10 + 60n + 6 + 60n ] / [ ( 1 + 10n )( 1 + 6n ) ]
d/dn( ln[ ( 1 + 10n ) / ( 1 + 6n ) ] ) = [ 16 + 120n ] / [ ( 1 + 10n )( 1 + 6n ) ]
L = exp( 5 * limn→0( [ 16 + 120n ] / [ ( 1 + 10n )( 1 + 6n ) ] / 1 ) )
= exp( 5 * [ 16 + 120(0) ] / [ ( 1 + 10(0) )( 1 + 6(0) ) ]
= exp( 5 * 16 )
∴ L = e80
I hope this helps! Message me in the comments if you have any questions, comments, or concerns!