
Yefim S. answered 11/07/22
Math Tutor with Experience
Area A(x) = 2x·7/(1 + ,x2) = 14x/(1 + x2).
A'(x) = 14(1 + x2 - 2x2)/(1 + x2)2 + 14(1 - x2)/(1 + x2)2 = 0; 1 - x2 = 0; x = ± 1
At x = 1 A(x) has max because derivative from left to right chenges sign from + to - .
So verteces of maximum area rectangle: (-1, 0), (-1, 7/2), (1, 7/2), (1, 0)