Kenneth A. answered 11/09/25
Experienced Tutor in Criminal Justice, Law, History, math, and writing
Part A: Find the Remainder Estimate
- Identify the function:
- We have
- f (x) = 1
- x(1n x)4•
- Find the integral: We need to compute the integral from n to ∞:
- ∫∞n f (x) dx = ∫∞n f (x) = 1 dx ·
- x(1n x)4
- Use substitution:
- Let u = 1n, x then du = 1⁄x dx which means dx = eu du. dx = du.
- Change the limits:
- When x = n, u = 1n n.
- When x = ∞, u = ∞.
- The integral becomes:
- ∫∞1n n 1 du ·
- u4
- Evaluate the integral:
- The integral ∫ 1 du = – 1⁄3u3 ·
- u4
- So,
- ∫∞1n n 1 du = [ – 1 ]∞1n n = 0 – ( – 1 ) = 1
- u4 3u3 3(1n n3 3 (1n n)3 ·
- Remainder estimate:
- The error is:
- | s – sn | ≤ 1
- 3 (1n n)3 ·
- Part B: Find the smallest value of n
- Set up inequality:
- We want
- 1 < 0.07.
- 3 (1n n)3
Kenneth A.
11/09/25