Dayaan M. answered 04/17/25
Earned A’s in Calc 1/AB & Calc 2/BC | 5 Years of Tutoring Experience
e are given the equation xcosy - ysinx +xytanx - xycoty = ycscy - xsecx
In order to find its derivative, we have to differentiate both sides with respect to x. We have to firstly break down each terms and find its derivative independently.
Lets differentiate the LEFT SIDE first:
Finding derivative of xcosy:
d/dx(xcosy) = cosy + x(-siny)y' = cosy - xsiny * y'
Finding derivative of -ysinx:
d/dx(-ysinx) = -y'sinx - ycosx
Finding derivative of xytanx using the product rule:
d/dx(xytanx) = xy'tanx + ytanx + xysec2x
Finding derivative of -xycoty using the product rule:
d/dx(-xycoty) = -[xy'coty + ycoty + xy(-csc2y)y']
= -xy'coty - ycoty + xycsc2y*y^2
So the derivative of the left side combined is:
cosy - xsiny*y' - y'sinx - ycosx + xy'tanx +ytanx +xysec2x - xy'coty - ycoty
Lets group the y' terms:
y'(-xsiny - sinx + xtanx -xcoty + xycsc2y) + cosy - ycosx + ytanx + xysec2x - ycoty
Now lets differentiate the RIGHT SIDE:
Finding derivative of ycscy:
d/dx(ycscy) = y'cscy + y(-cscycoty)y' = y'(cscy - ycscycoty)
Finding derivative of -xsecx:
d/dx(-xsecx) = -secx -xsecxtanx
So, the derivative of the right side combined is:
y'(cscy - ycscycoty) - secx - xsecxtanx
FINAL STEP:
We can equate the derivatives of both sides
y'(-xsiny - sinx + xtanx - xcoty + xycsc2y) + cosy - ycosx + ytanx + xysec2x - ycoty
= y'(cscy - ycscycoty) - secx - xsecxtanx
Now, lets move all y' terms to one side and everything else to the other:
y'[-xsiny - sinx + xtanx - xcoty + xycsc2y - cscy + ycscycoty]
= -secx - xsecxtanx - cosy + ycosx - ytanx - xysec2x + ycoty
So, the derivative dy/dx = y' is:
(-secx - xsecxtanx - cosy + ycosx - ytanx -xysec2x + ycoty) / (-xsiny - sinx + xtanx - xcoty + xycsc2y - cscy + ycscycoty)