
Bradford T. answered 09/30/22
Retired Engineer / Upper level math instructor
y(t)=gt2/2+vy0t + y0 y0 = 0
vy0 = 500sin(30) = 250
vx0= 500cos(30) = 250√3
x(t) = vx0t - air_resistance ==> No air resistance given
Find t when y = 0 or ground level
-9.8t2/2 + 250t = 0
t = 0 and 51 seconds
Range = x(51) = 433(51) = 22083 m
Maximum height is when y'(t) = 0
y'(t) = gt+vy0 =-9.8t+250 t = 250/9.8 = 25.5 seconds
y(25.5) = 3188.8 m
Max speed:
y'(51) = -9.8(51)/2+250 = -249.8 Speed = |y'(51)| = 249.8 m/s
x'(51) = 250√3= 433 m/s