
Cole K. answered 10/25/22
Experienced Tutor in Math, Physics, and Much More!
Assuming that all of numbers in the S&P 500 and Merck columns represent return values, and in assuming that the phrase "variance" refers to sample variance, it follows that the
Arithmetic Average Return of Stock X =
(∑Return Values of Stock X)/(Number of Return Values for Stock X);
Variance of Returns of Stock X =
[∑(Return Values of Stock X - Arithmetic Average Return of Stock X)2]/(Number of Return Values for Stock X - 1).
Thus, the
a)
Arithmetic Average Return of the S&P 500 Stock Index =
[10.7 + 28.2 + (-21.6) + (-12.1) + (-9.8) + 20.4 + 28.7 + 33.5 + 21.8 + 38.0]/(10) = 13.78 (percent)
Arithmetic Average Return of the Merck Stock =
[(-29.0) + (-11.2) + (-1.2) + (-36.0) + 41.8 + (-7.5) + 41.3 + 35.6 + 24.0 + 76.5]/(10) = 13.43 (percent)
b)
Variance of Returns of the S&P 500 Stock Index =
[(10.7 - 13.78)2 + (28.2 - 13.78)2 + (-21.6 - 13.78)2 + (-12.1 - 13.78)2 + (-9.8 - 13.78)2 + (20.4 - 13.78)2 + (28.7 - 13.78)2 + (33.5 - 13.78)2 + (21.8 - 13.78)2 + (38.0 - 13.78)2]/(10 - 1) = 444.57733
Variance of Returns of the Merck Stock =
[(-29.0 - 13.43)2 + (-11.2 - 13.43)2 + (-1.2 - 13.43)2 + (-36.0 - 13.43)2 + (41.8 - 13.43)2 + (-7.5 - 13.43)2 + (41.3 - 13.43)2 + (35.6 - 13.43)2 + (24.0 - 13.43)2 + (38.0 - 76.5)2]/(10 - 1) = 1296.1134
Note that if instead the phrase "variance" refers to population variance, you divide the sum of squared differences by (Number of Return Values for Stock X), instead of (Number of Return Values for Stock X - 1).
Hope that helps!