Find the intersection: The paraboloids intersect where:
- 16(x² + y²) = 2 - 16(x² + y²)
- 32(x² + y²) = 2
- x² + y² = 1/16
- This is a circle of radius r = 1/4
Set up the volume integral: Using cylindrical coordinates (r, θ, z):
- V = ∫∫ (z_upper - z_lower) dA
- V = ∫₀^(2π) ∫₀^(1/4) [2 - 32r²] r dr dθ
- Evaluate:∫₀^(1/4) (2r - 32r³) dr = [r² - 8r⁴]₀^(1/4) = 1/16 - 1/32 = 1/32
- ∫₀^(2π) (1/32) dθ = (1/32)(2π) = π/16