The question asks us to convert this integral to polar coordinate:
∫(y=0->2) ∫(x=y->sqrt(8 - y^2)) sqrt(x^2 + y^2) dx dy
To do this, we can use the typical conversions from cartesian to polar coordinates:
- x = r*cos(θ)
- y = r*sin(θ)
- x^2 + y^2 = r^2
- dA = dx*dy = r dr dθ
Calculating new bounds:
- Inside the circle x^2 + y^2 = 8 → r^2 = 8 → r = sqrt(8)
- Above y = 0 → first quadrant
- To the right of x = y → that line is θ = pi/4
So in polar:
- 0 <= θ <= pi/4
- 0 <= r <= sqrt(8)
Let's convert the integrand now:
sqrt(x^2 + y^2) = sqrt((r^2)*sin^2+cos^2) = sqrt((r^2)*1) = r
dx dy = r dr dθ
Plugging in:
sqrt(x^2 + y^2) * dx * dy
= r * (r dr dθ)
= r^2 dr dθ
Now let's put everything together:
∫(y=0->2) ∫(x=y->sqrt(8 - y^2)) sqrt(x^2 + y^2) dx dy
becomes
∫(θ=0->pi/4) ∫(r=0->sqrt(8)) r^2 dr dθ