I'm going to assume that your question is written as:
tan(2x) / sqrt(tan^2(2x)-15)
---------------------------------------------------------------------------------------
First, let's use trig identities to replace tan^2(2x) with sec^2(2x) - 1, simplifying to:
tan(2x) / sqrt(sec2(2x)-16)
Now we do u-substitution, using the entire function under the sqrt as our 'u':
u = sec2(2x) - 16 [note: sec^2(2x) = u + 16]
du = 2(sec(2x))*sec(2x)tan(2x)*2 dx = 4sec^2(2x)tan(2x) dx
(1/4)du = sec2(2x)tan(2x) dx
Let's now substitute sec2(2x) with u+16:
(1/4)du = (u+16)tan(2x) dx
Now, substitute into integral function:
(1/4) ∫ (u+16) / sqrt(u) du
And now we have a much easier integral function to deal with.
Split fraction into 2 parts:
(1/4) ∫ sqrt(u) + 16sqrt(u) du
Take the integral of both parts, we get:
(1/4) [(2/3)u3/2 + 32sqrt(u)] + C
Substitute u for sec2(2x)-16, the final solution should be:
(1/4) [(2/3)(sec2(2x)-16)3/2 + 32sqrt(sec2(2x)-16)] + C
Please let me know if you have any questions or if this is the correct answer or not. Thank you.