∫03 f(x)dx = 15 +12 = 27
∫03 g(x) + 5 dx = ∫03 g(x) dx + 15 = 10 so ... ∫03 g(x)dx = -5
∫03 2f(x) - 3g(x) dx = 2 ∫03 f(x)dx - 3 ∫03 g(x)dx = 2·27 - 3(-5) = 69
Kelly B.
asked 05/08/22If ∫02 f(x) dx = 15, ∫23 f(x) dx = 12, and ∫03 g(x)+5 dx = 10, then what is ∫03 2f(x) - 3g(x) dx?
∫03 f(x)dx = 15 +12 = 27
∫03 g(x) + 5 dx = ∫03 g(x) dx + 15 = 10 so ... ∫03 g(x)dx = -5
∫03 2f(x) - 3g(x) dx = 2 ∫03 f(x)dx - 3 ∫03 g(x)dx = 2·27 - 3(-5) = 69
Get a free answer to a quick problem.
Most questions answered within 4 hours.
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.