
Luke J. answered 04/29/22
Experienced High School through College STEM Tutor
Framework for the solutions:
u(t) is some function of t
d/dt[ A * u(t) ] = A * u'(t)
d/dt[ cos( u(t) ) ] = - sin[ u(t) ] * u'(t)
d/dt[ sin( u(t) ) ] = cos[ u(t) ] * u'(t)
d/dt[ eu(t) ] = eu(t) * u'(t)
f(t), g(t), u(t), and v(t) are all some functions of t
d/dt[ f( u(t) ) * g( v(t) ) ] = f( u(t) ) * g'( v(t) ) * v'(t) + g( v(t) ) * f'( u(t) ) * u'(t)
d/dt[ f( u(t) ) + g( v(t) ) ] = f'( u(t) ) * u'(t) + g'( v(t) ) * v'(t)
∴ d/dt[ A sin t + cos kt ] = A cos t - k sin kt
∴ d/dt[ A sin t cos kt ] = -kA sin t sin kt + A cos t cos kt
∴ d/dt[ A e-kt cos t ] = - A e-kt sin t - kA e-kt cos t
I hope this helps! Message me in the comments with any questions, comments, or concerns!