
Yefim S. answered 03/26/22
Math Tutor with Experience
Let (x0, y0) is tangent point. Then f'(x) = - 2(x + 4)-3; f'(x0) = - 2(x0 + 4)-3. Equation of tangent line:
y = (x0 + 4)-2 - 2(x0 + 4)-3(x - x0);
y- intercept: x = 0 y = (x0 + 4)-2 + 2x0(x0 + 4)-3 = (x0 + 4)-3(3x0 + 4).
x- intercept: y = 0; x = (3x0 + 4)/2
Area of triangle A = (3x0 + 4)2(x0 + 4)-3/4 =1/4(3x0 + 4)2/(x0 + 4)3.
dA/dx0 = 1/4[6(3x0 + 4)(x0 + 4)3 - (3x0 + 4)2·3(x0 + 4)2]/(x0 + 4)6 = 1/4(3x0 + 4)(6x0 + 24 - 9x0 - 12)/(x0 + 4)4 =
1/4((3x0 + 4)(12 - 3x0)/((x0 + 4)4 = 0; x0 = - 3/4(not 1st quadrant) or x0 = 4.
At x = 4 area A has maximum , because dA/dx changes sign from plus to minus from left to right.
Max A = A(4) = 1/4(12 + 4)2/(4 + 4)3 = 0.125