
William W. answered 03/18/22
Experienced Tutor and Retired Engineer
Having 2 unknowns with the same variable is extremely confusing so I'm going to rename the distance from the cow to the billboard as "x".
Using angle a:
tan(a) = 5/x so a = tan-1(5/x)
Using angle b:
tan(b) = 10/x so b = tan-1(10/x)
Therefore, since θ = b - a, then θ = tan-1(10/x) - tan-1(5/x)
To maximize theta, take the derivative and set it equal to zero:
1/(1 + (10/x)2) •(-10/x2) - 1/(1 + (5/x)2) •(-5/x2)
1/(1 + 100/x2)•(-10/x2) - 1/(1 + 25/x2)•(-5/x2)
1/(x2/x2 + 100/x2)•(-10/x2) - 1/(x2/x2 + 25/x2)•(-5/x2)
1/(x2 + 100)/x2)•(-10/x2) - 1/(x2 + 25)/x2)•(-5/x2)
x2/(x2 + 100)•(-10/x2) - x2/(x2 + 25)•(-5/x2)
-10/(x2 + 100) - -5/(x2 + 25)
-10/(x2 + 100) + 5/(x2 + 25) = 0
10/(x2 + 100) = 5/(x2 + 25)
10(x2 + 25) = 5(x2 + 100)
10x2 + 250 = 5x2 + 500
5x2 = 250
x2 = 50
x = √50 ≈ 7.07 feet