
Osman A. answered 03/08/22
Professor of Engineering Calculus and Business Calculus
Given that limx → 3 f ( x ) = 4, limx → 3 g ( x ) = −2, limx → 3 h ( x ) = 0, find the limits, if they exist. (If an answer does not exist, enter DNE.). (a) limx→3 [f(x) + 3g(x)]; (b) limx→3 [g(x)]3; (c) limx→3 √f(x); (d) limx→3 3f(x)g(x); (e) limx→3 g(x)h(x); (f) limx→3 g(x)h(x)f(x)
Detailed Solutions:
(a) limx→3 [f(x) + 3g(x)] = limx→3 f(x) + 3 limx→3 g(x) = 4 + 3 (−2) = 4 − 6 = −2
(b) limx→3 [g(x)]3 = ( limx→3 g(x) )3 = (−2)3 = −8
(c) limx→3 √f(x) = √ (limx→3f(x)) = √ (4) = = √4 = 2
(d) limx→3 3f(x)g(x) = (3) (limx→3 f(x)) (limx→3 g(x)) = (3) (4) (-2)) = -24
(e) limx→3 g(x)h(x) = (limx→3 g(x)) (limx→3 h(x)) = (−2)(0) = 0
(f) limx→3 g(x)h(x)f(x) = (limx→3 g(x)) (limx→3 h(x)) (limx→3 f(x)) = (−2) (0)(4) = 0