Find the area of the entire region:
A = ∫04/7 (4x - 7x2)dx
= -7/3x3 + 2x2 ] 04/7 = - 64/147 + 32/49 = 32/147
1/2A = 16/147
The line y = mx intersects the given parabola when mx = 4x - 7x2.
7x2 - 4x + mx = 0 ; x = 0 or x = (4 - m)/7
∫0(4-m)/7 [-7x2 + 4x - mx] dx
= -7/3x3 + 2x2 - m/2x2 ]0(4-m)/7
= -(4-m)3/147 + 2(4-m)2/49 - m(4-m)2/98
= [-3m/2(4-m)2 + 6(4-m)2 - (4-m)3] / 147 = 16 /147
(4-m)2 [ -3m/2 + 6 - 4 + m] = 16
(4-m)2 [ - m/2 + 2] = 16
[m2 - 8m + 16][ - m/2 + 2] = 16
-1/2m3 + 6m2 - 24m +16 = 0
m3 - 12m2 + 48m - 32 = 0
m ~ .825