Tom N. answered 02/08/22
Strong proficiency in elementary and advanced mathematics
Let u= cos(tanπx) then du = -sin(tanπx)πsec2(πx). Then y=sin(u1/2) and y' = cos(u1/2)du/2u1/2. This now gives y' = cos√(cos(tanπx))(-π/2)(sin(tanπx)sec2(πx)/√(cos(tanπx)). This can be simplified to the following form y'= cos√(cos(tanπx))(-π/2)(√(cos(tanπx))tan(tanπx)sec2(πx))