
Amy M. answered 03/16/15
Tutor
5.0
(1,582)
CalTech Grad, Software engineer with 30+ years experience.
Possible draws
wwwb-ng3
wwbw-ng 3
wwbb
wbww-ng 3
wbwb
wbbw
wbbb-ng 3
bwww- ng 3
bwwb
bwbw
bwbb-ng 3
bbww
bbwb-ng3
bbbw-ng 3
bbbb-ng
These are good
PwPwPbPb=3/8(2/7)(5/6)(4/5)
=1/14
=1/14
PwPbPwPb=3/8(5/7)(2/6)(4/5)
=1/14
=1/14
PwPbPbPw=3/8(5/7)(4/6)(2/5)
=1/14
=1/14
PbPwPwPb=5/8(3/7)(2/6)(4/5)
=1/14
=1/14
PbPwPbPw=5/8(3/7)(4/6)(2/5)
=1/14
=1/14
PbPbPwPw=5/8(4/7)(3/6)(2/5)
=1/14
Sum all these up
The probability of drawing two whites and two blues is 6/14
=42%
all Four balls will be the same color. Since there are only three white balls these must be four blue balls
Pbbbb=(5/8)(4/7)(3/6)(2/5)
=(1/7)(3/6)=1/14
=7.1%
Possible draws with three colors
wwwb=3/8(2/7)(1/6)(5/5)
wwwb=3/8(2/7)(1/6)(5/5)
=1/56
wwbw=3/8(2/7)(5/6)(1/5)
wwbw=3/8(2/7)(5/6)(1/5)
=1/56
wbww=3/8(5/7)(2/6)(1/5)
wbww=3/8(5/7)(2/6)(1/5)
=1/56
wbbb=3/8(5/7)(4/6)(3/5)
wbbb=3/8(5/7)(4/6)(3/5)
=3/28
bwww=5/8(3/7)(2/6)(1/5)
bwww=5/8(3/7)(2/6)(1/5)
=1/56
bwbb=5/8(3/7)(4/6)(3/5)
=3/28
bbwb=5/8(4/7)(3/6)(3/5)
bbwb=5/8(4/7)(3/6)(3/5)
=3/28
bbbw=5/8(4/7)(3/6)(3/5)
bbbw=5/8(4/7)(3/6)(3/5)
=3/28
p3=4/56+12/28=1/14+6/14
=7/14=1/2
50%