Tom K. answered 12/22/21
Knowledgeable and Friendly Math and Statistics Tutor
var(X+Y) = E(X+Y-E(X+Y))^2 = E(X-E(X)+Y-E(Y))^2 = E(X-E(X))^2+E(Y-E(Y))^2 +2E((X-E(X))(Y-E(Y)))=
E(X-E(X))^2+E(Y-E(Y))^2 +2E(XY -XE(Y)-E(X)Y+E(X)E(Y)) =
E(X-E(X))^2+E(Y-E(Y))^2 +2E(XY) -2E(XE(Y))-2E(E(X)Y)+2E(E(X)E(Y)) =
E(X-E(X))^2+E(Y-E(Y))^2 +2E(XY) -2E(X)E(Y)-2E(X)E(Y)+2E(X)E(Y) =
E(X-E(X))^2+E(Y-E(Y))^2 + 2E(XY) - 2E(X)E(Y)
This is the point at which you use independence, which tells us that E(XY)=E(X)E(Y)
Thus,
E(X-E(X))^2+E(Y-E(Y))^2 + 2E(XY) - 2E(X)E(Y) =
E(X-E(X))^2+E(Y-E(Y))^2 + 2E(X)E(Y) - 2E(X)E(Y) =
E(X-E(X))^2+E(Y-E(Y))^2 =
var(X) + var(Y)