
Osman A. answered 12/26/21
Professor of Engineering Calculus and Business Calculus
Find all possible functions with the given derivative.
1. If y′ = x, then y = ____
2. If y′ = x2, then y =____
3. If y′ = x3, then y =____
Detailed Solution:
1. If y′ = x, then y = ____ ==> If f ′ (x) = x, then f(x) = ∫ f ′ (x) dx ==> If f ′ (x) = x, then f(x) = ∫ x dx ==>
If f ′ (x) = x, then f(x) = x2/2 + C
2. If y′ = x2, then y =____ ==> If f ′ (x) = x2, then f(x) = ∫ f ′ (x) dx ==> If f ′ (x) = x2, then f(x) = ∫ x2 dx ==>
If f ′ (x) = x2, then f(x) = x3/3 + K
3. If y′ = x3, then y =____ ==> If f ′ (x) = x3, then f(x) = ∫ f ′ (x) dx ==> If f ′ (x) = x3, then f(x) = ∫ x3 dx ==>
If f ′ (x) = x3, then f(x) = x4/4 + H